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Objec0ve	:		
To	 develop	 a	 Data	 Assimila-on	 algorithm	 under	 the	
framework	 of	 stochas-c	 EnKF	 for	 assimila-ng	 range	 limited	
observa-on	so	as	to	use	the	qualita-ve	informa-on	from	it.	

Examples	of	range	limited	observa0ons	

Photo	:	Earth	Imaging	Journal	

Figure	 1.a:	 Illustra-ve	 example	 of	 sea-ice	 thickness	 which	 is	
available	only	up	-ll	50cm	in	real	-me	from	SMOS	satellite	and	
figure	b:	SMAP	satellite	measure	soil	moisture	for	top	5cm	

1.	Range	Limited	Observa0on	(RLO)	:		
Observa-ons	 obtained	 via	 any	 source	 exist	 only	 in	 certain	
interval	of	its	range,	due	to	limita-on	of	measuring	gauge	and	
etc.	

2.	Methodology	and	Algorithm	

Bayesian	Rule	:	 p x | y( ) =
p x( )p y | x( )

p y( )

Concept	 of	 Ensemble	 par-al	 upda-ng	 (EnPU)	 is	 used	 for	
RLO,	 which	 allows	 to	 use	 qualita-ve	 informa-on	 of	 the	
data	i.e.,	posterior	will	be	
	 p xk | yquant,yqual( )

Figure	 2:	 (Borup	 et.	 al.,	 2015)	 With	 and	 without	 par-al	
upda-ng	when	the	measurement	gauge	has	lower	observa-on	
limit		



Par0al	Ensemble	Kalman	Filter	(PEnKF)	
²  The	forecast	and	update	equa-ons	remains	the	same	as	in	

Stochas-c	Ensemble	Kalman	Filter	(	Evensen,	1994	)		
²  Update	 only	 those	 members	 which	 lies	 within	 the	

observable	range	
²  For	out	of	range	observa-ons,	crea-ng	a	virtual	observa-on	

at	threshold	limit	
²  Using	 Two	 Piece	 Gaussian	 distribu-on	 (Fechner’s												

Kollek-vmasslehre,	 1897),	 perturbing	 observa-ons	 where	
one	of	the	observa-on	error	standard	devia-on	will	be		

							
						where	p	is	real	number	between	(0,1]	

σor = p∗ Hx
f( )

Posterior	when	the	prior	is	in-range							
								

p xk | yquant,yqualit( )∝
p(xk )p(yquant | xk )
p(xk )p(yqualit | xk )
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Algorithm	:	The	flow	Chart	for	the	PEnKF	



3.	Numerical	Experiments	
²  EnKF,	PEnKF,	and	EnKF-Ignored	(	observa-on	out	of	range	

ignored),	DA	methods	are	tested	under	the	framework	of	
twin	experiment.	

²  Model	–	Lorenz’96		
²  Sensi-vity	 analysis	 with	 number	 of	 observa-ons,	

observa-on	 frequency,	 threshold	 limit,	 model	 error	 and	
etc.,	was	performed	

Figure	3a:	RMSE	for	analysis	in	-me	where	75%	of	observa-ons	are	out	of	range	
on	an	average	for	total	-me	of	integra-on.	3b:	RMSE	for	analysis	for	different	
observa-on	frequency	

Figure	4a:	snap	shot	of	-me	series	of	a	par-cular	state	variable.	b)	Rank	
histogram(reliability)	for	all,	half	and	quarter	observa-ons.		

4.	Conclusion	
ü  	Improves	quality	of	forecast	
ü  Reduce	uncertainty	
ü  Improves	reliability	of	forecast	
Future	work	 :	 Implementa-on	with	real	data	set	on	small	scale	
real	world	problem	
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