An Efficient Ensemble Data Assimilation Approach To Deal With Range Limited Observation
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Objective :
To develop a Data Assimilation algorithm under the
framework of stochastic EnKF for assimilating range limited

observation so as to use the qualitative information from it.

1. Range Limited Observation (RLO) :
Observations obtained via any source exist only in certain
interval of its range, due to limitation of measuring gauge and

etc.
Examples of range limited observations
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Figure 1.a: lllustrative example of sea-ice thickness which is
available only up till 50cm in real time from SMOS satellite and

figure b: SMAP satellite measure soil moisture for top 5cm
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2. Methodology and Algorithm
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Bayesian Rule : p(xly)=

Concept of Ensemble partial updating (EnPU) is used for
RLO, which allows to use gqualitative information of the

data i.e., posterior will be
p (Xk I yquant > yqual)
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-

Figure 2: (Borup et. al., 2015) With and without partial
updating when the measurement gauge has lower observation

limit




Partial Ensemble Kalman Filter (PEnKF)

<> The forecast and update equations remains the same as in
Stochastic Ensemble Kalman Filter ( Evensen, 1994 )

<> Update only those members which lies within the
observable range

<> For out of range observations, creating a virtual observation
at threshold limit

<~ Using Two Piece Gaussian distribution (Fechner’s
Kollektivmasslehre, 1897), perturbing observations where
one of the observation error standard deviation will be
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3. Numerical Experiments

<> EnKF, PEnKF, and EnKF-Ignored ( observation out of range
ignored), DA methods are tested under the framework of

twin experiment.
<> Model — Lorenz’96
¢

Sensitivity analysis with number of observations,

observation frequency, threshold limit, model error and

etc., was performed
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Figure 3a: RMSE for analysis in time where 75% of observations are out of range
on an average for total time of integration. 3b: RMSE for analysis for different

observation frequency
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Figure 4a: snap shot of time series of a particular state variable. b) Rank

histogram(reliability) for all, half and quarter observations.

4. Conclusion

v" Improves quality of forecast
v" Reduce uncertainty

v Improves reliability of forecast

Future work : Implementation with real data set on small scale

real world problem
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